CONTENTS

Titlepage
Copyright
Credits
Dedication
Publisher's Note
Acknowledgments
About the Author
Introduction

What’s New in This Book?
Who Should Read This Book?
What Is Covered in This Book?
The Essentials Series

Chapter 1: Navigating the User Interface

Getting to Know the Civil 3D User Interface
Working with the Application Menu
Working with the Ribbon
Working with the Toolspace
Using the Drawing Area
Using the Command Line
Using Panorama
Using the Transparent Commands Toolbar
Using the Inquiry Tool

Chapter 2: Leveraging a Dynamic Environment

Connecting Objects and Styles
Connecting Labels and Label Styles
Connecting Objects to Objects
Connecting Objects to Labels
Appreciating the Richness of the 3D Model
Sharing Data in a Dynamic Environment

Chapter 3: Establishing Existing Conditions Using Survey Data

What Is Survey Data?
Creating a Survey Database
Importing Survey Data
Automating Field-to-Finish

2
Editing Survey Points
Editing Survey Figures
Creating Additional Points

Chapter 4: Modeling the Existing Terrain Using Surfaces
Understanding Surfaces
Creating a Surface from Survey Data
Using Breaklines to Improve Surface Accuracy
Editing Surfaces
Displaying and Analyzing Surfaces
Annotating Surfaces

Chapter 5: Designing in 2D Using Alignments
Understanding Alignments
Creating Alignments from Objects
Creating Alignments Using the Alignment Creation Tools
Editing Alignments
Applying Design Criteria Files and Check Sets

Chapter 6: Displaying and Annotating Alignments
Using Alignment Styles
Applying Alignment Labels and Label Sets
Creating Station/Offset Labels
Creating Segment Labels
Using Tag Labels and Tables

Chapter 7: Designing Vertically Using Profiles
Creating Surface Profiles
Displaying Profiles in Profile Views
Creating Design Profiles
Editing Profiles
Using Design Check Sets and Criteria Files

Chapter 8: Displaying and Annotating Profiles
Applying Profile Styles
Applying Profile View Styles
Applying Profile View Bands
Applying Profile Labels
Creating and Applying Profile Label Sets
Creating Profile View Labels
Projecting Objects to Profile Views
Chapter 9: Designing in 3D Using Corridors
 Understanding Corridors
 Creating an Assembly
 Creating a Corridor
 Applying Corridor Targets
 Creating Corridor Surfaces
Chapter 10: Creating Cross Sections of the Design
 Using the Section Editor
 Creating Sample Lines
 Creating Section Views
 Sampling More Sources
Chapter 11: Displaying and Annotating Sections
 Applying Section Styles
 Applying Section Labels
 Controlling Section Display with Code Set Styles
 Applying Labels with Code Set Styles
 Applying Section View Styles
 Applying Section View Bands
 Applying Group Plot Styles
 Creating Section View Labels
Chapter 12: Designing and Analyzing Boundaries Using Parcels
 Understanding Parcels
 Creating Parcels from Objects
 Creating Parcels by Layout
 Editing Parcels
Chapter 13: Displaying and Annotating Parcels
 Applying Parcel Styles
 Applying Parcel Area Labels
 Creating Parcel Segment Labels
 Editing Parcel Segment Labels
 Creating Parcel Tables
Chapter 14: Designing Gravity Pipe Networks
 Understanding Gravity Pipe Networks
 Creating Gravity Pipe Networks
 Editing Gravity Pipe Networks
Chapter 15: Designing Pressure Pipe Networks
Understanding Pressure Pipe Networks
Creating Pressure Pipe Networks
Editing Pressure Pipe Networks

Chapter 16: Displaying and Annotating Pipe Networks
Displaying Pipe Networks Using Styles
Annotating Pipe Networks in Plan View
Annotating Pipe Networks in Profile View
Creating Pipe Network Tables

Chapter 17: Designing New Terrain
Understanding Grading
Understanding Feature Lines
Creating Feature Lines
Editing Feature Lines
Understanding Grading Objects
Creating Grading Objects
Editing Grading Objects

Chapter 18: Analyzing, Displaying, and Annotating Surfaces
Combining Design Surfaces
Analyzing Design Surfaces
Calculating Earthwork Volumes
Labeling Design Surfaces

Appendix: AutoCAD® Civil 3D® 2015 Certification
End-User License Agreement

List of Tables
Table 12-1
Table A-1

List of Illustrations
Figure 1-1: Major components of the Civil 3D user interface
Figure 1-2: Part of the Civil 3D application menu
Figure 1-3: Tabs arrange large numbers of similar Civil 3D commands into groups.
Figure 1-4: Panels provide another level of grouping within a ribbon tab.
Figure 1-5: Most panels expand downward to reveal more commands, as is the case with the Create Design panel on the Home tab of the ribbon.
Figure 1-6: The ribbon displays the contextual Alignment: Main Road A tab
because an alignment has been selected in the drawing (the name of the tab you see may be slightly different depending on which alignment you selected).

Figure 1-7: The Prospector tab with a portion of the tree structure highlighted in red

Figure 1-8: The drawing area showing the same model in plan view on the left and 3D view on the right

Figure 1-9: A view of the command line while a transparent command (covered later in this chapter) is used to draw a line. Notice how the command line reports that the LINE command has been started and then prompts for the first piece of information: the “first point.”

Figure 1-10: Panorama showing the Events and Alignment Entities tabs

Figure 1-11: The Transparent Commands toolbar with red lines pointing to the Bearing Distance and Northing Easting transparent commands

Figure 1-12: The Inquiry Tool showing a partial list of available inquiry types

Figure 2-1: The same surface is shown in four different configurations using four different styles (from left to right): using contours, elevation banding, TIN lines and contours, and slope arrows.

Figure 2-2: The contours on the left are displayed using proposed layers that are typically darker and more prominent. The contours on the right are displayed using existing layers that are typically lighter, so they appear more as background information.

Figure 2-3: Assigning the Station And Offset label style to the label

Figure 2-4: Clicking the Edit Current Selection command for the selected label style

Figure 2-5: Changing the visibility of the leader by modifying a label style

Figure 2-6: Grip-editing the profile

Figure 2-7: Grip-editing the alignment

Figure 2-8: Data shortcuts shown in Prospector

Figure 2-9: A surface data reference and an alignment data reference shown along with other surfaces and alignments in Prospector

Figure 2-10: A profile created from an alignment data reference and a surface data reference

Figure 3-1: Survey points shown as dots, giving a sense of how they are used to create mapping

Figure 3-2: The Essentials survey database shown in Prospector after the completion of step 7

Figure 3-3: So far, importing data shows only a bunch of relatively meaningless x markers in the drawing.

Figure 3-4: The appearance of the drawing makes more sense now that features such as fence lines and treelines have been drawn on the appropriate layers.
Figure 3-5: The contents of a specific point group shown in the item view of Prospector
Figure 3-6: An error has caused this point to display incorrectly.
Figure 3-7: The result of editing the building figures
Figure 4-1: A surface model displayed as TIN lines. Note the irregular triangular shapes that make up the surface model.
Figure 4-2: Creating a surface from within Prospector
Figure 4-3: The contents of a surface shown in Prospector
Figure 4-4: Changing the visual style to 2D Wireframe in the lower-right viewport
Figure 4-5: A surface shown using the Conceptual visual style
Figure 4-6: The effect of breaklines on a surface
Figure 4-7: Adding breaklines from within Prospector
Figure 4-8: Creating breaklines from survey figures. Note how some figures are checked as breaklines and some are not.
Figure 4-9: Unchecking the Add Breakline operation for the surface
Figure 4-10: The two top views show the surface in 2D and 3D without the breaklines; the two bottom views show the surface with the breaklines included.
Figure 4-11: Erroneous TIN lines created across a bay in the surface data
Figure 4-12: The effect of hide boundaries added at building locations
Figure 4-13: The extents of the surface after erroneous TIN lines have been removed. The areas of removal are highlighted.
Figure 4-14: 3D view of incorrect surface point
Figure 4-15: A 3D view of a surface using the Elevation Banding (3D) style
Figure 4-16: Slope analysis of surface shown in 3D
Figure 4-17: Slope arrows can be used to identify a drainage divide (delineated in red) in the project.
Figure 4-18: Spot elevation label showing 189.80' (57.85m) added where the new road meets the existing road
Figure 4-19: Contour labels
Figure 5-1: A single-line drawing of the subdivision roads (in red)
Figure 5-2: The object with the dark blue grips is a polyline, and the object with the light blue grips is an alignment. Alignments have more types of grips that enable more geometric editing functionality.
Figure 5-3: Selecting the Tangent-Tangent (With Curves) command
Figure 5-4: Moving a PI grip
Figure 5-5: Moving a PC or PT grip
Figure 5-6: Moving the pass-through-point grip
Figure 5-7: Moving the radius grip
Figure 5-8: Moving the start point or endpoint grip
Figure 5-9: Moving the tangent midpoint grip
Figure 5-10: Alignment Layout Tools toolbar
Figure 5-11: Alignment after removing a tangent and a curve
Figure 5-12: Alignment after the addition of a reverse curve
Figure 5-13: The Alignment Entities tab of Panorama showing the tabular data of the alignment
Figure 5-14: The Sub-entity Editor Tool, Pick Sub-entity Tool, and Alignment Layout Parameters dialog box
Figure 5-15: Tooltip relaying details about a design check set violation
Figure 5-16: Warning symbols indicating design check set violations within the alignment
Figure 5-17: Warning symbols in Panorama indicate design check set violations.

Figure 6-1: Different alignment styles are used to represent the right-of-way, edges of pavement, and centerlines in this drawing.
Figure 6-2: Assigning an alignment style in the Properties window
Figure 6-3: Geometry point labels displayed on the Jordan Court alignment
Figure 6-4: The Madison Lane alignment after the label set has been applied
Figure 6-5: Changing the style of the geometry point labels improves their appearance and readability by moving them outside the right-of-way line.
Figure 6-6: Station/offset labels applied to the edge-of-pavement arcs at the intersection of Madison Lane and Jordan Court
Figure 6-7: Curve labels added to the Jordan Court alignment. To improve readability, the labels have been dragged away from the alignment and into clear areas.
Figure 6-8: Curve tag labels on the Jordan Court alignment
Figure 6-9: An alignment segment table for Jordan Court
Figure 7-1: The newly created profile view
Figure 7-2: Invoking the Draw Tangents With Curves command
Figure 7-3: Moving a PVI grip
Figure 7-4: Moving a tangent slope grip
Figure 7-5: Moving a tangent midpoint grip
Figure 7-6: Moving the pass-through point grip
Figure 7-7: Moving the start point or endpoint grip
Figure 7-8: Profile Layout Tools toolbar
Figure 7-9: Clicking the Free Vertical Parabola (PVI Based) command
Figure 7-10: Warning symbols indicating design check set violations
Figure 7-11: Warning symbol with a tooltip reporting that the passing-sight-
distance criterion isn’t being met

Figure 7-12: A warning symbol in Panorama indicating a violation of the headlight-sight-distance criterion

Figure 8-1: The Layout profile style displays lines and curves with different colors as well as markers at key geometric locations.

Figure 8-2: Using Prospector to access the Properties command for the Jordan Court EGCL profile

Figure 8-3: Additional grid lines displayed as a result of applying the Major & Minor Grids 10V profile view style

Figure 8-4: Assigning Jordan Court EGCL as Profile 1

Figure 8-5: The newly added band showing stations, existing elevations (left), and proposed elevations (right)

Figure 8-6: The list of labels to be applied to the Jordan Court FGCL profile

Figure 8-7: Logan Court FGCL profile after the newly created profile label set has been applied

Figure 8-8: The beginning of the Jordan Court FGCL profile, where there is a tie to the edge of the existing Emerson Road as well as a V-shaped drainage ditch

Figure 8-9: Additional text added to a label in the Text Component Editor dialog box

Figure 8-10: The station-elevation label and depth label added to the Jordan Court profile view

Figure 8-11: A 3D polyline representing a water pipe has been projected into the Jordan Court profile view.

Figure 8-12: A Civil 3D point projected to the Jordan Court profile view

Figure 9-1: The blue lines represent 3D chains formed by combining alignments with profiles to form a three-dimensional pathway.

Figure 9-2: A Civil 3D assembly that establishes lanes, curbs, sidewalks, and grading

Figure 9-3: Assemblies inserted at intervals along a 3D chain

Figure 9-4: The red lines are feature lines that connect like points on each assembly insertion.

Figure 9-5: A corridor along with its corridor surface, shown in 3D view

Figure 9-6: Selecting the Basic tool palette

Figure 9-7: A portion of the newly created corridor shown in a 3D perspective

Figure 9-8: A cross-section view of a road that shows the daylighting of a 3:1 slope on either side

Figure 9-9: A width or offset target (in red) applied to a corridor to widen the lane and create a pull-off area

Figure 9-10: The use of a profile (3D chain shown in red) to control the elevations of a ditch
Figure 9-11: Choosing the attachment point for the curb and gutter subassembly
Figure 9-12: The Assembly Properties dialog box after the groups and subassemblies have been renamed and the properties for the lanes have been set properly
Figure 9-13: The assembly with newly added BasicSideSlopeCutDitch subassemblies on either side
Figure 9-14: The Target Mapping dialog box showing the three types of corridor targets along with the subassemblies that can use each type of target
Figure 9-15: The corridor is wider where the lane-edge polyline was targeted.
Figure 9-16: Areas of daylighting along the corridor
Figure 9-17: Contours displayed for the newly created corridor surface. Note the incorrect contours in the center of the site.
Figure 9-18: Selecting the corridor extents as the basis for creating a surface boundary

Figure 10-1: The Section Editor ribbon tab
Figure 10-2: A section view shown by the Section Editor command
Figure 10-3: The ditches have been removed, but only at a single station within the corridor.
Figure 10-4: A plan view (left) and section view (right) of the corridor after the ditches have been removed
Figure 10-5: The Sample Line Tools toolbar showing the different methods available for sample line placement
Figure 10-6: The Create Sample Line Group dialog box
Figure 10-7: Sample lines created at corridor stations
Figure 10-8: A newly created section view
Figure 10-9: Newly created section views configured by sheet
Figure 10-10: Sampling additional sources using the Section Sources dialog box
Figure 11-1: The sections have been stylized to differentiate between rock and existing ground.
Figure 11-2: A label set has been applied to the rock section to provide information about the elevations of the rock layer.
Figure 11-3: The Jordan Court corridor section with the Presentation code set style applied
Figure 11-4: Coding diagram for the BasicLaneTransition subassembly
Figure 11-5: A code set style that includes labels has been applied to the Jordan Court corridor section.
Figure 11-6: A fourth sheet is created as a result of changing the section view style applied to the section view group.
Figure 11-7: A section view with bands added for existing ground elevations, rock
depth, and offsets

Figure 11-8: A fourth sheet is created to accommodate the extra area taken up by the section view bands.

Figure 11-9: Where to click to change the group plot style for the section view group

Figure 11-10: A section view group with a new group plot style applied

Figure 11-11: Customizing the label contents for a section view label

Figure 11-12: A label has been added that indicates the offset and elevation of the curb flowline.

Figure 12-1: The four parcel segments on the left don’t form a closed shape; therefore, no parcel is created. On the right, a parcel object is created automatically, as shown by the black outline and the LOT 1 label.

Figure 12-2: Sites listed in Prospector, with the contents of one site expanded

Figure 12-3: The effect of sites on the interaction between an alignment and a parcel

Figure 12-4: The newly created parcel shown in Prospector

Figure 12-5: Seven parcels are now listed in the Prospector item view.

Figure 12-6: Snapping to the end of the curve to begin creating a new parcel line

Figure 12-7: Snapping to a location that is perpendicular to the eastern lot line

Figure 12-8: Completing the farm property boundary by clicking a point perpendicular to the west property boundary

Figure 12-9: Selecting the beginning point of the frontage

Figure 12-10: Selecting the endpoint of the frontage

Figure 12-11: Selecting the beginning point of the frontage

Figure 12-12: Selecting the ending point of the frontage

Figure 12-13: Selecting the beginning point of the frontage

Figure 12-14: Selecting the ending point of the frontage

Figure 12-15: As it’s moved with the diamond-shaped grip, the parcel line stays perpendicular to the parcel segments it’s associated with.

Figure 12-16: Trimming the parcel segment has removed the small triangular parcel.

Figure 12-17: The western end of the parcel has been simplified.

Figure 12-18: Defining the frontage for the parcel-editing command

Figure 13-1: A view of the project after all the parcels have been assigned the appropriate styles

Figure 13-2: Parcel Style Display Order shown in the Site Parcel Properties dialog box

Figure 13-3: Parcel Style Display Order at work

Figure 13-4: Entering a description for the Adjoiner : 3 parcel
Figure 13-5: A curve label that has been dragged away from the curve to reveal its dragged state
Figure 13-6: Selecting parcels in the order they are to be renumbered
Figure 13-7: New lines added to a curve table
Figure 14-1: A pipe network shown in plan view (left), profile view (top right), and 3D view (bottom right)
Figure 14-2: A pipe network shown in Prospector
Figure 14-3: A parts list configured for storm sewer design
Figure 14-4: A 3D view of a pipe object and structure object
Figure 14-5: The Network Layout Tools toolbar
Figure 14-6: Icon indicating a connection between a pipe and a structure
Figure 14-7: Inlet placement
Figure 14-8: The Network Layout Tools toolbar after selecting the structure and pipe
Figure 14-9: A portion of the newly created storm pipe network
Figure 14-10: Two pipes and three structures drawn in a profile view
Figure 14-11: Using Dynamic Input to enter a pipe diameter value
Figure 14-12: Editing the sump elevation of a structure using grips
Figure 14-13: Newly created manhole and resized connecting pipes
Figure 14-14: The sanitary pipe network in profile view after correcting several elevations
Figure 14-15: The Pipe Network Vistas button highlighted on the Network Layout Tools toolbar
Figure 14-16: Selecting multiple rows in the Structures tab of Panorama
Figure 14-17: Pipes in profile view shown with inside and outside walls
Figure 15-1: A pressure network shown in plan view (left), profile view (center), and model view (right)
Figure 15-2: A pressure network shown in Prospector
Figure 15-3: The specialized ribbon tab for pressure network layout
Figure 15-4: Pressure network parts (indicated with red arrows) shown in profile view along with other profile information
Figure 15-5: The compass (the red circle) shows the available bend angles and deflections.
Figure 15-6: The newly drawn waterline including the 90° elbow at circle E, and the curved section of pipe between circles E and F
Figure 15-7: The water main pressure pipes and fittings shown in profile view
Figure 15-8: Launching the Pressure Network Plan Layout ribbon tab by clicking the Plan Layout Tools command
Figure 15-9: The specialized ribbon tab for pressure pipe layout in profile view
Figure 15-10: A glyph indicating the proper connection of a pipe to a fitting
Figure 15-11: The connection of the proposed waterline to the existing waterline, shown in a 3D perspective
Figure 15-12: The connection of the proposed waterline to the existing waterline, shown in plan, profile, and 3D perspective
Figure 16-1: A structure shown as a block (left) and as an outline of a 3D shape (right)
Figure 16-2: A structure shown as a solid (left), boundary (center), and block (right)
Figure 16-3: A tee fitting shown as a centerline (left), catalog defined block (center), and user-defined block (right).
Figure 16-4: A conflict between two manholes is evident when the style reflects their true size.
Figure 16-5: A pipe in profile view
Figure 16-6: A storm pipe crossing shown as an ellipse indicates a conflict with a sanitary pipe.
Figure 16-7: Revised pipe names shown in the item view of Prospector
Figure 16-8: Revised structure names shown in the item view of Prospector
Figure 16-9: The initial placement of labels in the drawing is rather cluttered and will require modification.
Figure 16-10: The same area shown in Figure 16-9 after edits have been made to the labels
Figure 16-11: The Add Labels dialog box showing the styles selected for labeling pipes and structures in profile view
Figure 16-12: The initial placement of pipe network labels in profile view
Figure 16-13: Pipe network labels in profile view that have been edited to improve readability
Figure 16-14: A portion of a structure table created for a sanitary sewer pipe network
Figure 17-1: A grading design for a pond
Figure 17-2: Two crossing feature lines that occupy the same site
Figure 17-3: A plan view of PI and elevation-point grips on a feature line
Figure 17-4: The Edit Geometry and Edit Elevations panels of the Feature Line ribbon tab
Figure 17-5: The result of editing the feature lines in this exercise
Figure 17-6: Using the Tab key and coordinate readout to select the correct elevation
Figure 17-7: Circular grips mark elevation points added to match the feature line to
the surface.

Figure 17-8: A pond design composed of grading objects

Figure 17-9: An example of grading criteria typically used for the inside slope of a pond

Figure 17-10: The Grading Creation Tools toolbar

Figure 17-11: Selecting grading criteria on the Grading Creation Tools toolbar

Figure 17-12: Selecting the Create Grading command

Figure 17-13: Contours representing the pond design

Figure 17-14: The pond model after several edits

Figure 18-1: The Paste Surface command, located in a Prospector context menu (left) and the Surface ribbon tab (right)

Figure 18-2: You can change the order of operations using the arrow buttons. This can affect the result of pasting multiple surfaces together.

Figure 18-3: Clicking the up arrow changes the order of operations so that the Lots – Interior surface is pasted before the Pond surface.

Figure 18-4: Grading for the entire project is represented by one surface.

Figure 18-5: The Analysis Type choices available on the Analysis tab of the Surface Properties dialog box

Figure 18-7: Lot 70 after the building pad has been adjusted downward to eliminate the steep slope

Figure 18-8: Several prominent design features can be noted in the quick profile.

Figure 18-9: A quick profile view showing a feature line and a surface profile

Figure 18-10: A TIN volume surface named Earthwork shown in Prospector, and its volume results shown in the Surface Properties dialog box

Figure 18-11: Contour labels in the front yard of lot 2

Figure 18-12: The labels update, indicating that the maximum slope requirement is now met for lot 2.
Credits

Senior Acquisitions Editor: Willem Knibbe
Development Editor: Kim Wimpsett
Technical Editor: Joshua Modglin
Production Editor: Christine O’Connor
Copy Editor: Tiffany Taylor
Editorial Manager: Pete Gaughan
Vice President and Executive Group Publisher: Richard Swadley
Associate Publisher: Chris Webb
Book Designer: Happenstance Type-O-Rama
Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Josh Chase, Word One New York
Indexer: Ted Laux
Project Coordinator, Cover: Lauren Buroker
Cover Designer: Wiley
Front Cover Image: © iStock.com/KentWeakley
Back Cover Images: Courtesy of Eric Chappell
Dedication

To Madison
Publisher's Note

Dear Reader,

Thank you for choosing AutoCAD Civil 3D 2015 Essentials. This book is part of a family of premium-quality Sybex books, all of which are written by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing consistently exceptional books. With each of our titles, we’re working hard to set a new standard for the industry. From the paper we print on, to the authors we work with, our goal is to bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments and get your feedback on how we’re doing. Feel free to let me know what you think about this or any other Sybex book by sending me an email at contactus@sybex.com. If you think you’ve found a technical error in this book, please visit http://sybex.custhelp.com. Customer feedback is critical to our efforts at Sybex.

Best regards,

Chris Webb

Associate Publisher, Sybex
Acknowledgments

Every year that I get to work on another version of AutoCAD® Civil 3D® Essentials is a blessing, and this year is the fourth! I am very encouraged by the emails I get from readers throughout the year, asking questions and offering suggestions, and I especially like those that compliment the book. Of course, I’m just a small part of the book’s success, and it would be a terrible disservice not to mention Wiley/Sybex for giving me this opportunity yet again, and its great people for helping make the book a success. To Willem Knibbe, thanks once again for making the book happen. To Pete Gaughan, kudos for taking the reins and being a great coordinator, sounding board, and go-to person. To Kim Wimpsett, thanks for putting up with me and making the book better than I could have ever made it myself. To Joshua Modglin, thanks again for giving me the peace of mind of knowing you had my back on the technical aspects.

And to my family, for putting up with a fourth year of Dad working late nights and being distracted and sometimes stressed, and for all the other not-so-fun aspects of having an author in the family: thank you. I especially would like to thank my wife Dixie for putting up with my schedule and being a “single parent” when things got really busy for me.